R-дерево (структура данных) - ορισμός. Τι είναι το R-дерево (структура данных)
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι R-дерево (структура данных) - ορισμός

  • 350px

R-дерево (структура данных)         
R-дерево () — древовидная структура данных (дерево), предложенная в 1984 году Антонином Гуттманом. Она подобна B-дереву, но используется для организации доступа к пространственным данным, то есть для индексации многомерной информации, такой, например, как географические данные с двумерными координатами (широтой и долготой). Типичным запросом с использованием R-деревьев мог бы быть такой: «Найти все музеи в пределах 2 километров от моего текущего местоположения».
Двоичное дерево         
  • Рис. 1. Двоичное дерево поиска, в котором ключами являются латинские символы упорядоченные по алфавиту.
АЦИКЛИЧЕСКИЙ ГРАФ, В КОТОРОМ У КАЖДОЙ ВЕРШИНЫ НЕ БОЛЕЕ 2 ПОТОМКОВ
Бинарное дерево; Двоичное дерево (структура данных)
Двои́чное де́рево — иерархическая структура данных, в которой каждый узел имеет не более двух потомков (детей). Как правило, первый называется родительским узлом, а дети называются левым и правым наследниками. Двоичное дерево является упорядоченным ориентированным деревом.
Префиксное дерево         
  • Пример сжатого префиксного дерева для русского языка.
В ИНФОРМАТИКЕ: СТРУКТУРА ДАННЫХ, ПОЗВОЛЯЮЩАЯ ХРАНИТЬ АССОЦИАТИВНЫЙ МАССИВ, КЛЮЧАМИ КОТОРОГО ЯВЛЯЮТСЯ СТРОКИ
Трие; Нагруженное дерево; Бор (структура данных); Trie
Префиксное дерево (также борВ первом переводе монографии Кнута., лучВ последующих переводах монографии Кнута., нагруженное дерево, ) — структура данных, позволяющая хранить ассоциативный массив, ключами которого являются строки. Представляет собой корневое дерево, каждое ребро которого помечено каким-то символом так, что для любого узла все рёбра, соединяющие этот узел с его сыновьями, помечены разными символами. Некоторые узлы префиксного дерева выделены (на рисунке они подписаны цифрами) и считается, что префиксное дерево содержит данную строку-клю

Βικιπαίδεια

R-дерево (структура данных)

R-дерево (англ. R-trees) — древовидная структура данных (дерево), предложенная в 1984 году Антонином Гуттманом. Она подобна B-дереву, но используется для организации доступа к пространственным данным, то есть для индексации многомерной информации, такой, например, как географические данные с двумерными координатами (широтой и долготой). Типичным запросом с использованием R-деревьев мог бы быть такой: «Найти все музеи в пределах 2 километров от моего текущего местоположения».

Эта структура данных разбивает многомерное пространство на множество иерархически вложенных и, возможно, пересекающихся, прямоугольников (для двумерного пространства). В случае трехмерного или многомерного пространства это будут прямоугольные параллелепипеды (кубоиды) или параллелотопы.

Алгоритмы вставки и удаления используют эти ограничивающие прямоугольники для обеспечения того, чтобы «близкорасположенные» объекты были помещены в одну листовую вершину. В частности, новый объект попадёт в ту листовую вершину, для которой потребуется наименьшее расширение её ограничивающего прямоугольника. Каждый элемент листовой вершины хранит два поля данных: способ идентификации данных, описывающих объект, (либо сами эти данные) и ограничивающий прямоугольник этого объекта.

Аналогично, алгоритмы поиска (например, пересечение, включение, окрестности) используют ограничивающие прямоугольники для принятия решения о необходимости поиска в дочерней вершине. Таким образом, большинство вершин никогда не затрагиваются в ходе поиска. Как и в случае с B-деревьями, это свойство R-деревьев обусловливает их применимость для баз данных, где вершины могут выгружаться на диск по мере необходимости.

Для расщепления переполненных вершин могут применяться различные алгоритмы, что порождает деление R-деревьев на подтипы: квадратичные и линейные.

Изначально R-деревья не гарантировали хороших характеристик для наихудшего случая, хотя хорошо работали на реальных данных. Однако в 2004-м году был опубликован новый алгоритм, определяющий приоритетные R-деревья. Утверждается, что этот алгоритм эффективен, как и наиболее эффективные современные методы, и в то же время является оптимальным для наихудшего случая.

Τι είναι R-дерево (структура данных) - ορισμός